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This paper addresses the problem of railway vibrations induced by moving trains and their modelling.

An important aspect of this modelling is, undoubtedly, the track-soil interaction, which plays a signifi-

cant role in generating seismic waves and enables an accurate description of low-frequency vibrations.

In the past, a coupled lumped mass (CLM) model for the soil was developed, based on calibration with

an equivalent finite element model that simulates the corresponding soil behaviour. While this approach

allows for the use of a simplified track-soil model, it requires excessive computational resources during

the calibration process. The aim of this research is to establish a straightforward link between the CLM

model parameters (masses, stiffness, and damping coefficients) and common soil dynamic characteris-

tics. To achieve this, a neural network is employed to establish this relationship. The neural network’s

training and testing database is generated using finite element simulations. The results show that the

neural network can determine the CLM model parameters with sufficient accuracy, reproducing the

same dynamic behaviour of the soil.

Keywords: neural network, CLM model, railway, finite element methods

1. Introduction

Contrary to vehicle-road interaction issues, the dynamic train-track-soil interaction represents a

fully coupled problem, requiring the simultaneous solution of the equations of motion for the train, track,

and soil [1, 2]. Regarding track-soil coupling, the Winkler foundation is entirely sufficient for modelling

continuous subgrade. However, when discrete support (aka sleepers) is used, a single distributed founda-

tion fails to predict the expected interaction accurately [3].

Rücker [4] investigated the interaction between sleepers and the soil in the context of high-speed

vehicles to define a coupling condition. This condition was later revised and redefined by Knothe and

Wu [5]. Knothe and Wu demonstrated that track-soil coupling primarily influences the low- and mid-

frequency ranges, contradicting Rücker’s initial assumption that it is significant at low vehicle speeds.

Furthermore, they advised against using the Winkler foundation model to represent the ground’s dis-

tributed stiffness and damping, as it does not account for the coupling between sleepers through the soil.
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Their findings highlighted the critical role of sleeper coupling and demonstrated the individual contribu-

tion of each sleeper’s contact with the soil.

The Winkler and generalized Winkler models are widely used in geotechnical engineering, partic-

ularly for analysing the dynamic impedance of foundations. Gazetas [6] emphasized the practical utility

of single-degree-of-freedom systems in addressing soil–foundation interaction challenges. Least-squares

calibration methods provide a historical approach to calculating equivalent foundation mass, damping,

and stiffness matrices [7].

To avoid complex and huge models, including for example co-simulation techniques [8, 9], it is

proposed in this paper to focus on discrete models, such as those found in various predictive approaches

for vibrations induced by railway traffic (for example [10–13]), and using machine learning techniques

to optimize the parameter definition process. An existing model, called CLM model, is used with a new

approach to characterize the parameters that define them, leveraging machine learning techniques for

optimization.

2. CLM model

2.1 Modelling approach overview

The mechanical track/soil model recently proposed by Kouroussis et al. [14] is briefly discussed in

this paper. The flexible rail is characterized by its Young’s modulus (Er), geometrical moment of inertia

(Ir), cross-sectional area (Ar), and density (ρr). Viscoelastic properties of the railpads and ballast are

modelled using springs and dampers, with stiffness and damping parameters (kp and dp for the railpads,

kb and db for the ballast).

The CLM model for the foundation builds upon an extension of Lysmer’s analogue foundation. In

addition to the foundation’s mass (mf ), stiffness (kf ), and damping (df ), supplementary spring-dashpot

systems with stiffness (kc) and damping (dc) are incorporated to represent the coupling between sleeper-

foundation contact areas. Reduced expressions for transmissibility have been developed to determine

these five parameters for various soil types, whether homogeneous or layered. Notably, the damping

parameter dc can take negative values to account for ground wave propagation delay [14].
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Figure 1. The flexible track, taking into account a condensed soil (represented by the CLM model) [15]

The validation has been made for both homogeneous and layered half-space [14,15]. The method-

ology has been developed and adapted to ballasted track but it can be transposed to underground network:

the track model with the condensed form of foundation can be used, as the foundation parameters can be

estimated by updating numerical soil response receptances.
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As totally performed in the time domain, this approach can be easily included in the vehicle de-

sign process, with more accurate and advanced models of track. The limitation initially induced by the

decoupling can be also lifted with a more detailed model than the Winkler foundation.

2.2 Calibration

The proposed model is schematically illustrated in Figure 2 and consists of discrete masses, springs,

and dampers.
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Figure 2. The CLM model: a multi-foundation model for soil–foundation and foundation–to–foundation

interaction [14]

Based on the initial Lysmer’s analogue model for each foundation (i.e., the sleeper-through-the-

ballast contact area defined with a mass mf , a spring kf and a damper df ), each foundation is connected

to the adjacent ones by springs (with parameter kc) and dampers (with parameter dc). Considering that

a force is applied to the i-th mass, the overall impedances P1 and P2 for each vertical displacement xj

are [14]

P1(ω) =
F (ω)

n
∑

j=−n

Xj(ω)

= kf − ω2mf + jωdf (1)

P2(ω) =
F (ω)

n
∑

j=−n

(−1)jXj(ω)

= (kf + 4kc)− ω2mf + jω(df + 4dc) (2)

where F (ω) and Xj(ω) are the Fourier transforms of force f(t) and displacements xj(t) respectively,

as a function of the circular frequency ω. Eqs. (1) and (2) give unique relationships to calibrate CLM

model parameters. Those parameters can be easily calculated using a finite element model of the soil,

by applying a known force at a given point (mass) and recording the vertical displacement spectrum at n
points (sufficiently high to capture the entire ground wave propagation).

For each soil type considered, a finite element numerical simulation is performed, for instance,

using ABAQUS (Figure 3). To prevent spurious wave reflections, specific boundary conditions are im-

posed using infinite elements. The dynamic simulation yields the vertical displacement at n points on the

soil surface. The displacement histories of these points are then applied in Eqs. (1) and (2) to manually

calibrate the parameters of the CLM model corresponding to the soil. This calibration process is tedious,

as it requires conducting a numerical simulation for each specific soil configuration. These simulations

are computationally demanding, with the finite/infinite element models requiring several hours due to the

high number of elements involved. Furthermore, the calibration process involves manual adjustments,

where parameters P1 and P2 are tuned to minimize local discrepancies in the real and imaginary spectra

between the CLM and ABAQUS models.
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Figure 3. The finite/infinite element model for the soil, used for calibrating the CLM model

3. On the use of neural networks

Artificial neural networks are popular machine learning techniques that offer new insights in fitting

operations, compared to standard techniques such as numerical optimization or statistical methods [16].

Training a neural network to approximate the relationship between inputs and outputs is particularly

effective for complex, non-linear problems, if enough training data are available.

For the current issue, the structure of the five artificial neural networks designed to calculate the

parameters of the CLM model can be described as follows:

1. Number of Networks: Five separate neural networks are implemented, each dedicated to predict-

ing one of the CLM model parameters (kf , df , mf , kc, and dc).

2. Input Layer: Each network takes normalized soil characteristics (Young modulus E, density ρ,

Poisson ratio ν, viscous damping coefficient β) as input, typically represented by four neurons.

3. Hidden Layers: The number of hidden layers and neurons per layer may vary depending on the

complexity required. For instance, each network has one hidden layer with 10 to 20 neurons, using

activation functions such as the sigmoid function.

4. Output Layer: Each network has a single output neuron, which provides the corresponding nor-

malized CLM model parameter (kf , df , mf , kc, or dc).

5. Training:

• The networks are trained using back propagation with a suitable optimizer and a loss function

like mean squared error to minimize prediction error.

• The training data is derived from one hundred numerical simulation results, ensuring suffi-

cient variation in soil properties for generalization.

6. Normalization and denormalization: Both input and output data are normalized to facilitate

training. To improve network convergence during training, the inputs to the neural networks are

normalized between 0 and 1. While this normalization is not mandatory, it helps ensure that the

synaptic weight values remain within the same order of magnitude. The output values are later

denormalized to retrieve the actual CLM model parameters.
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Figure 4. Structure of the five artificial neural networks to calculate the parameters of the CLM model

The input values for the neural networks are obtained by normalizing the soil characteristics using

a chosen maximum value as follows:

• input representing E : E/400 [MPa],

• input representing ρ : ρ/2600 [kg/m3],

• input representing ν : ν/0.45 [−],

• input representing β : β/0.0013 [s].

When the neural networks have been trained, it becomes possible to predict the parameters of the

CLM model for a given soil. This is calculated using the following matrix relations:

kf = 120 sigm
(

sigm
([

E
400

ρ

2600

ν
0.45

β

0.0013

]

.W1kf

)

.W2kf

)

(3)

df = 350 sigm
(

sigm
([

E
400

ρ

2600

ν
0.45

β

0.0013

]

.W1df

)

.W2df

)

(4)

kc = 60 sigm
(

sigm
([

E
400

ρ

2600

ν
0.45

β

0.0013

]

.W1kc

)

.W2kc

)

(5)

mf = 260 sigm
(

sigm
([

E
400

ρ

2600

ν
0.45

β

0.0013

]

.W1mf

)

.W2mf

)

(6)

dc = −50 sigm
(

sigm
([

E
400

ρ

2600

ν
0.45

β

0.0013

]

.W1dc

)

.W2dc

)

(7)

where W1 and W2 are the weight matrices established and the sigm function applied to a matrix corre-

sponds to applying the sigmoid function to each element of the matrix:

sigm













...

· · · aij · · ·

...












=









...

· · ·

1

1+e
−aij

· · ·

...









. (8)

The matrices, obtained after complete training and validation, are presented in Figure 5. It is important

to note that the cross-damping coefficient dc is still assumed to be negative. This assumption accounts

for the contributions of wave delay as well as material damping effects.
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Figure 5. Weight matrices of the trained neural networks (the values of the matrix coefficients have been rounded)
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4. Results

Several soil configurations were used to validate the CLM model. These data are derived from

test cases conducted in the past where manual calibration had been performed. These test soil types

were chosen for their relatively possible error on one or more of the CLM model parameters [14].

Table 1 shows an example of results, comparing them to manually obtained data, demonstrating that the

implemented neural network is effective and its accuracy is entirely acceptable. These results pertain

to a homogeneous soil with the following characteristics: Young modulus E = 210MPa, density

ρ = 2000 kg/m3, Poisson ratio ν = 0.35 and viscous damping coefficient β = 0.0006 s. It should be

noted that manual calibration cannot be strictly considered a reference, an uncertainty remains on these

parameters values as the only criterion used was validation by comparing displacement evolution at a

few points under a unit load.

Table 1. Example of Comparative Results on the CLM Model

kf df kc mf dc
[MN/m] [kNs/m] [MN/m] [kg] [kNs/m]

Parameters manually calibrated 54.69 131.65 20.01 171.57 −9.92
Parameters obtained using Eqs. (3)–(7) 47.42 134.27 19.36 191.12 −9.81

To account for layered soils, equivalent homogeneous soils are derived based on the average shear

wave velocity Vs,30 as defined in Eurocode 8 [17]. This parameter is calculated using the following

equation:

Vs,30 =
30 [m]
∑nl

i
hi

cs,i

(9)

where hi is the thickness of the i-th layer, nl is the total number of layers within the top 30m and cs,i is

the shear wave velocity of the i-th layer. Thus, equivalent homogeneous soils with cs = Vs,30 are used

to model layered soils. The parameter Vs,30 represents the mean shear wave velocity in the top 30m of

the soil profile. This simplification yields satisfactory calibration results for soil profiles with smooth

stratigraphy.

5. Conclusion

To avoid the complexity and burden of a compound model for vehicle/track/soil simulation, a dis-

crete and simplified soil representation, known as the CLM model, has been developed. This model

includes coupling through the track contact area and is based on Lysmer’s analogue foundation. Cou-

pling spring and damper elements have been incorporated to model the interaction between foundations.

To calibrate the dynamic parameters defined in the model, concise expressions for overall

impedances have been established to align with the discrete model parameters. These expressions en-

able efficient and comprehensive comparisons between discrete and numerical models. A fitting pro-

cess, based on a neural network, is proposed using these simplified analytical relations, akin to those in

Lysmer’s analogue model.

The CLM model demonstrates excellent agreement when fitted with numerical results from fi-

nite/infinite element soil modelling in various scenarios, including homogeneous soil and layered media.

Closed-form solutions are ultimately derived, providing a rapid method for estimating CLM model pa-

rameters for typical soil configurations.
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